Главная

Химические источники тока
Практическая химия
Справочные материалы
Журнальные заметки

Именные химические приборы

Химические элементы

Химический клипарт

Библиотека химии углеводов

Метеорология

Минералогия


Абиетиновая кислота
Амигдалин
Анабазин и Лупинин
Ангеликалактон
Арабиноза
Арахидоновая кислота

Арбутин
1,8-диокси-2-ацетилнафталин

Белки из гороха
Бетаин из патоки
Бетулин и Суберин
Бетулиновая кислота

Борнеол

Ванилин

Винная ксилота

Галактоза
Глициризиновая кислота
Глюкоза
Глютаминовая кислота
Госсипол

Дигитонин

Жирные кислоты

Казеин и Тирозин

Камфора из пинена

Каротин

Катехины

Ксилоза

Кофеин
Келлин
Кумарин

Лактоза
Лимонная кислота

Мальтоза
Манноза

Ментол

Мочевая кислота

Муравьиная и Уксусная кислоты
Никотин

Олиторизид
Пектин
Пинен

Рутин и Кверцетин
Сантонин
Склареол
Слизевая кислота
Соласодин
Сорбит
Сахароза
Танин

Теобромин
Тирозин
Триоксиглутаровая кислота

Усниновая кислота

Урсоловая кислота

Фруктоза и Инулин
Фурфурол

Хамазулен
Хинин
Хитин
Холевая кислота

Хлорогеновая кислота
Хлорофилл

Цистеин
Цитизин
Цитраль

Щавелевая кислота

Эргостерин
Эруковая и Брассидиновая кислоты



 
Предыдущая Следующая

Судя по данным инфракрасной спектрометрии, молекулярная структура керогена после деструкции характеризуется потерей значительного количества липидных компонентов, сначала с функциями карбоновых кислот, кетонов и альдегидов, а затем — длинноцепочечных структур с СН2-группами. Происходит усиление ароматизации и поликонденсации остаточной части керогена, который по элементному составу и молекулярной структуре теряет "сапропелевый" облик и уже почти не отличается от бедного водородом гумусового органического вещества.

Образовавшиеся при проявлении ГФН в большом количестве растворимые битуминозные компоненты (более 30 % от исходной массы керогена) характеризуются содержанием углерода (С) 80— 82 %, водорода (Н) 9,5—11 %, т. е. близки по составу к битуму, образую­щемуся при термическом разложении сапропелевых сланцев (С 81—82,5  %, Н 9,1—9,5 %). Более половины образовавшегося битума (до 60—80 %) представлено смолами и асфальтенами, до 20—40 %—углеводородами, в которых на долю н-алканов приходится до 10—30 %, а на долю изоалканов и цикланов — до 20—60 % и аренов — до 20—50 %. В составе низкокипящих углеводородов значительная доля принадлежит цикланам (преобладают циклопентаны); доля н-алканов и аренов невелика. С глубиной и ростом температуры заметно увеличивается доля н-алканов, аренов и циклогексанов, а циклопентанов — снижается. От молодых к более древним отложениям в этой зоне прослеживается повышение доли алканов и уменьшение — цикланов и аренов. Среди алканов иногда значительная доля (до 50 %) приходится на изоалканы.

Образовавшаяся на ГФН смесь асфальтово-смолистых ве­ществ и нефтяных углеводородов по элементному и групповому составу сходна с асфальтами, которые рассматривались А. Ф. Добрянским в качестве промежуточного этапа превраще­ния сапропелевого вещества в нефть. Фиксируемая по природным данным картина нефтеобразования как будто бы вполне отвечает этим взглядам. Однако дальнейшее протекание процесса   нефтеобразования  развивается  иначе,   чем   предполагал А. Ф. Добрянский.

Образование из твердого керогена большого количества асфальтово-смолистых веществ и нефтяных углеводородов, включая низкокипящие, а также газов (С1, С2 — С5, СО2, H2S, N2) сопровождается многократным увеличением объема. В уплотняющихся под нагрузкой вышележащих отложений глинистых породах вследствие этого возникают аномально высокие давления, на 20—30 МПа превышающие нормальное гидростатическое давление в смежных пористых водонасыщенных песчаниках. При достижении критического давления периодически происходят флюидоразрывы глинистых пород с образованием микротрещин и выбросом сжатых нефтяных и газовых углеводородов в водонасыщенные песчаники, где при их аккумуляции образуются скопления нефти.


Предыдущая Следующая