Главная

Химические источники тока
Практическая химия
Справочные материалы
Журнальные заметки

Именные химические приборы

Химические элементы

Химический клипарт

Библиотека химии углеводов

Метеорология

Минералогия


Абиетиновая кислота
Амигдалин
Анабазин и Лупинин
Ангеликалактон
Арабиноза
Арахидоновая кислота

Арбутин
1,8-диокси-2-ацетилнафталин

Белки из гороха
Бетаин из патоки
Бетулин и Суберин
Бетулиновая кислота

Борнеол

Ванилин

Винная ксилота

Галактоза
Глициризиновая кислота
Глюкоза
Глютаминовая кислота
Госсипол

Дигитонин

Жирные кислоты

Казеин и Тирозин

Камфора из пинена

Каротин

Катехины

Ксилоза

Кофеин
Келлин
Кумарин

Лактоза
Лимонная кислота

Мальтоза
Манноза

Ментол

Мочевая кислота

Муравьиная и Уксусная кислоты
Никотин

Олиторизид
Пектин
Пинен

Рутин и Кверцетин
Сантонин
Склареол
Слизевая кислота
Соласодин
Сорбит
Сахароза
Танин

Теобромин
Тирозин
Триоксиглутаровая кислота

Усниновая кислота

Урсоловая кислота

Фруктоза и Инулин
Фурфурол

Хамазулен
Хинин
Хитин
Холевая кислота

Хлорогеновая кислота
Хлорофилл

Цистеин
Цитизин
Цитраль

Щавелевая кислота

Эргостерин
Эруковая и Брассидиновая кислоты



 
Предыдущая Следующая

Из циклического спирта холестерина образуется, например, углеводород хо лестан:

По такой же схеме образовывались и другие цикланы — стерины и тритерпены (С27 — С35) из стероидов, присутствующих в живом веществе в свободном виде или в виде эфиров жирных кислот.

Другой, более значительный по масштабам источник образования циклоалканов связан с дегидратационной циклизацией непредельных  жирных кислот с образованием насыщенных циклических углеводородов.

Из образующихся циклоалкенов при дальнейших превращениях получаются нафтеновые и нафтеново-ароматические углеводороды.

Возможность такого механизма образования циклоалканов изучена А. И. Богомоловым экспериментально при нагревании олеиновой кислоты до 200°С с алюмосиликатным катализатором. При этом были получены углеводороды от С5 до С40 различных классов — алифатические, алициклические и ароматические. Среди образовавшихся циклоалканов преобладали изомеры с пяти- и шестичленными кольцами и мостикового типа, как в обычных природных нефтях. Были обнаружены также би- и трициклические циклоалканы.

Арены. Для живого вещества организмов ароматические структуры нехарактерны, в то время как в нефтях содержание ароматических углеводородов составляет 10—20, а иногда и до 35 %.

В живом веществе ароматические структуры содержатся в лигнине (производные гидроксифенилпропана), некоторых аминокислотах, а также гидрохинонах (витамины Е, К) в виде отдельных ароматических колец. Их доля в исходном для нефти веществе организмов очень мала, поэтому образование аренов в сапропелевом органическом веществе осадков, пород и в нефтях следует связывать главным образом с вторичными процессами преобразования органического вещества, происходящими в осадках на стадиях диагенеза и особенно катагенеза в зоне повышенных температур.

Частично арены образуются сразу же после отмирания организмов в свежих илах вследствие преобразования полиеновых соединений типа каротиноидов, из стероидных соединений, бензохинонов, а также гидрохинонов и нафтохинонов, в структуре которых имеются ароматические ядра:

 

 

В экспериментах А. И. Богомолова по термокатализу непредельных жирных кислот и термическому разложению органического вещества сапропелевых сланцев при 200°С отмечалось образование смеси углеводородов, в которой арены составляли от 15 до 40 %, причем они были представлены всеми типами ареновых структур, характерных для природных нефтей.


Предыдущая Следующая