Главная

Химические источники тока
Практическая химия
Справочные материалы
Журнальные заметки

Именные химические приборы

Химические элементы

Химический клипарт

Библиотека химии углеводов

Метеорология

Минералогия


Абиетиновая кислота
Амигдалин
Анабазин и Лупинин
Ангеликалактон
Арабиноза
Арахидоновая кислота

Арбутин
1,8-диокси-2-ацетилнафталин

Белки из гороха
Бетаин из патоки
Бетулин и Суберин
Бетулиновая кислота

Борнеол

Ванилин

Винная ксилота

Галактоза
Глициризиновая кислота
Глюкоза
Глютаминовая кислота
Госсипол

Дигитонин

Жирные кислоты

Казеин и Тирозин

Камфора из пинена

Каротин

Катехины

Ксилоза

Кофеин
Келлин
Кумарин

Лактоза
Лимонная кислота

Мальтоза
Манноза

Ментол

Мочевая кислота

Муравьиная и Уксусная кислоты
Никотин

Олиторизид
Пектин
Пинен

Рутин и Кверцетин
Сантонин
Склареол
Слизевая кислота
Соласодин
Сорбит
Сахароза
Танин

Теобромин
Тирозин
Триоксиглутаровая кислота

Усниновая кислота

Урсоловая кислота

Фруктоза и Инулин
Фурфурол

Хамазулен
Хинин
Хитин
Холевая кислота

Хлорогеновая кислота
Хлорофилл

Цистеин
Цитизин
Цитраль

Щавелевая кислота

Эргостерин
Эруковая и Брассидиновая кислоты



 
Предыдущая Следующая

Реологические характеристики нефтей в значительной степени определяются содержанием в них смол, асфальтенов и твердого парафина.

Вязкопластичное течение жидкости описывается уравнением Бингама:

 

τ = τо + μ* (d γ/dt),                            (4.10)

 

         где τо – динамическое напряжение сдвига;

μ* – кажущаяся вязкость пластичных жидкостей, равная угловому коэффициенту линейной части зависимости dγ/dt = ƒ(τ).

         Движение вязкопластичных нефтей аппроксимируется степенным законом зависимости касательного напряжения (τ) от модуля скорости деформации (dγ/dt):

τ = К(dγ/dt)n,                 (4.11)

 

где К – мера консистенции жидкости;

n – показатель функции.

С увеличением вязкости величина консистенции жидкости возрастает. Линии консистентности для различных типов реологически стационарных неньютоновских жидкостей приведены на рис. 4.6.

При n = 1, уравнение 4.11 описывает течение ньютоновских жидкостей (рис. 4.6., кривая 3), проявляющие упругие свойства. К ньютоновским жидкостям относятся, растворы индивидуальных углеводородов, смеси углеводородов до С17, газоконденсатные системы, легкие нефти, молекулярные растворы.

При n < 1 поведение нефти соответствуют псевдопластикам (кривая 2) – упруго-пластичной жидкости. Примером могут служить нефти, компоненты которых склонны к образованию надмолекулярных структур,  высокопарафинистые дегазированные нефти, высокополимерные буровые растворы и др.

При n > 1 поведение нефти соответствует дилатантной жидкости (кривая 4) – вязко-пластические жидкости. Примером могут служить буровые растворы, водные растворы полимеров для повышения нефтеотдачи, представляющие собой высокомолекулярные соединения со сложным строением молекул и др.

Реологическая кривая 1 (рис. 4.6) относится к бингамовским пластикам – пластическая жидкость.

 Рис. 4.6. Виды линий консистентности: 1. – бингамовские пластики; 2. – псевдопластики; 3. – ньютоновские жидкости; 4. – дилатантные жидкости

 

В состоянии равновесия нефтяная система ведет себя как пластическая жидкость и обладает некоторой пространственной структурой, способной сопротивляться сдвигающему напряжению (τ), пока величина его не превысит значение статического напряжения сдвига (τо). После достижения некоторой скорости сдвига, нефть способна течь как ньютоновская жидкость. Примером пластической жидкости могут служить нефти с высоким содержанием парафина при температурах ниже температуры кристаллизации, аномально-вязкие нефти, с высоким содержанием асфальтенов, структурированные коллоидные системы, используемые для повышения нефтеотдачи пласта.


Предыдущая Следующая