Главная

Химические источники тока
Практическая химия
Справочные материалы
Журнальные заметки

Именные химические приборы

Химические элементы

Химический клипарт

Библиотека химии углеводов

Метеорология

Минералогия


Абиетиновая кислота
Амигдалин
Анабазин и Лупинин
Ангеликалактон
Арабиноза
Арахидоновая кислота

Арбутин
1,8-диокси-2-ацетилнафталин

Белки из гороха
Бетаин из патоки
Бетулин и Суберин
Бетулиновая кислота

Борнеол

Ванилин

Винная ксилота

Галактоза
Глициризиновая кислота
Глюкоза
Глютаминовая кислота
Госсипол

Дигитонин

Жирные кислоты

Казеин и Тирозин

Камфора из пинена

Каротин

Катехины

Ксилоза

Кофеин
Келлин
Кумарин

Лактоза
Лимонная кислота

Мальтоза
Манноза

Ментол

Мочевая кислота

Муравьиная и Уксусная кислоты
Никотин

Олиторизид
Пектин
Пинен

Рутин и Кверцетин
Сантонин
Склареол
Слизевая кислота
Соласодин
Сорбит
Сахароза
Танин

Теобромин
Тирозин
Триоксиглутаровая кислота

Усниновая кислота

Урсоловая кислота

Фруктоза и Инулин
Фурфурол

Хамазулен
Хинин
Хитин
Холевая кислота

Хлорогеновая кислота
Хлорофилл

Цистеин
Цитизин
Цитраль

Щавелевая кислота

Эргостерин
Эруковая и Брассидиновая кислоты



 
Предыдущая Следующая

Cu2+ +NH3↔Cu (NH3)2+ + NH3 ↔ Cu (NH3)22+ +NH3

↔Cu (NH3)32+ + NH3  ↔Cu(NH3)42+
            [Cu(NH3)2+]                       [Cu (NH3)32+]

                             К1 =                           ;  К3 =                          

                                       [Cu2+][NH3]                    [Cu(NH3)22+][NH3]

                                            [Cu (NH3) 22+]                        [Cu (NH3)42+]

                      К2 =                               ; К4 =             

                             [Cu (NH3)2+][NH3]                     [Cu(NH3)32+] [NH3]  

       Общая   константа  устойчивости:

                                                                             [Cu (NH3)42+]

                   КУСТ [Cu (NH3)4]2+ = К1К2К3К4 =                                 = 2,1• 10 13    

                                                                             [Cu2+][NH3]4

  Таким образом, при образовании комплексов в растворе происхо­дит последовательное (стадийное) внедрение лигандов во внутреннюю сферу комплексообразователя с соответствующим отщеплением молекул воды, так как исходный ион Сu2+ был гидратирован (он имел со­став [Cu(H2O)4]2+). При диссоциации комплекса [Cu(NH3)4]2+, наобо­рот, происходит соответствующая замена лигандов на молекулы воды. Поскольку концентрация воды при таких процессах не изменяется, ее не включают в выражение констант устойчивости или констант нестойкости.

  9.7.Роль комплексных соединений. Комплексные соединения широко распро­странены в природе. В состав многих растений и живых организмов входят соединения с макроциклическими лигандами. В упрощенном виде тетрадентантный макроцикл порфин представлен на рис. 3.3

 

 Комплексы с участием порфина называются порфи-ринами. Они отличаются друг от друга централь­ными ионами-комплексообразователями и заместителями, присоеди­ненными к атомам углерода на периферии лиганда. В наиболее про­стом виде порфиновый цикл представлен четырьмя атомами азота, соединенными углеродными цепями (рис. 3.3). Кроме того, имеют­ся четыре или более заместителей - радикалов R1, R2, R 3, R4. В зеле­ном катализаторе фотосинтеза - хлорофилле роль комплексообразова­теля выполняет магний (рис. 3.4). Макроциклический комплекс железа входит в состав гемоглобина (рис. 3.4).


Предыдущая Следующая