Главная

Химические источники тока
Практическая химия
Справочные материалы
Журнальные заметки

Именные химические приборы

Химические элементы

Химический клипарт

Библиотека химии углеводов

Метеорология

Минералогия


Абиетиновая кислота
Амигдалин
Анабазин и Лупинин
Ангеликалактон
Арабиноза
Арахидоновая кислота

Арбутин
1,8-диокси-2-ацетилнафталин

Белки из гороха
Бетаин из патоки
Бетулин и Суберин
Бетулиновая кислота

Борнеол

Ванилин

Винная ксилота

Галактоза
Глициризиновая кислота
Глюкоза
Глютаминовая кислота
Госсипол

Дигитонин

Жирные кислоты

Казеин и Тирозин

Камфора из пинена

Каротин

Катехины

Ксилоза

Кофеин
Келлин
Кумарин

Лактоза
Лимонная кислота

Мальтоза
Манноза

Ментол

Мочевая кислота

Муравьиная и Уксусная кислоты
Никотин

Олиторизид
Пектин
Пинен

Рутин и Кверцетин
Сантонин
Склареол
Слизевая кислота
Соласодин
Сорбит
Сахароза
Танин

Теобромин
Тирозин
Триоксиглутаровая кислота

Усниновая кислота

Урсоловая кислота

Фруктоза и Инулин
Фурфурол

Хамазулен
Хинин
Хитин
Холевая кислота

Хлорогеновая кислота
Хлорофилл

Цистеин
Цитизин
Цитраль

Щавелевая кислота

Эргостерин
Эруковая и Брассидиновая кислоты



 
Предыдущая Следующая

          Процесс образования водородной связи на при­мере двух молекул воды может быть представлен следующей схемой (точками обозначается водородная связь, а знаками σ+,  σ - эффек­тивные заряды атомов):

 

                                            . .       σ+     . . σ–

                                          : О –  Н  • • • О    Н

                                             ‌‌‌‌                   ‌‌‌‌  

                                            Н                Н

Более правильным следует считать, что в образовании водо­родной связи принимает участие и донорно-акцепторное взаимо­действие. Ведь для этой связи характерны направленность в прост­ранстве и насыщаемость. На это впервые указал Н. Д. Соколов, разработавший квантово-механическую теорию водородной связи.

         Согласно донорно-акцепторной теории, водородная связь начи­нается с электростатического взаимодействия, в результате кото­рого электронная пара атомов водорода еще больше смещается в сторону кислорода, благодаря чему атом водорода как бы «оголяется», другими словами s-орбнталь атома водорода «высвобождается» и становится способной принять неподеленную электронную пару атома кислорода другой молекулы. Поле протона велико и притяжение им электронной пары атома кислорода весьма эффек­тивно, в то время других своих электронов около протона нет, поэтому отталкивание другой молекулы воды в области атома водо­рода сильно понижается.

         Этот механизм объясняет, почему только водород способен образовывать водородную связь. У всякого другого атома при освобождении орбитали ядро не «оголяется» и внутренние оболочки обеспечивают отталкивание от электронных оболочек второй мо­лекулы.

         Рассмотренный механизм образования водородной связи тре­бует, чтобы атом элемента, соединяясь с водородом, обладал высокой относительной электроотрицательностью и имел в наличии неподеленную электронную пару. Только при этом условии элек­тронное облако атома водорода достаточно сильно сместится в сторону атома партнера. Таким образом, химическая связь, образованная положитель­но поляризованным водородом молекулы А—Н (или полярной груп­пы—А-Н) и электроотрицательным атомом В другой или той же молекулы, называется водородной связью.


Предыдущая Следующая