Главная

Химические источники тока
Практическая химия
Справочные материалы
Журнальные заметки

Именные химические приборы

Химические элементы

Химический клипарт

Библиотека химии углеводов

Метеорология

Минералогия


Абиетиновая кислота
Амигдалин
Анабазин и Лупинин
Ангеликалактон
Арабиноза
Арахидоновая кислота

Арбутин
1,8-диокси-2-ацетилнафталин

Белки из гороха
Бетаин из патоки
Бетулин и Суберин
Бетулиновая кислота

Борнеол

Ванилин

Винная ксилота

Галактоза
Глициризиновая кислота
Глюкоза
Глютаминовая кислота
Госсипол

Дигитонин

Жирные кислоты

Казеин и Тирозин

Камфора из пинена

Каротин

Катехины

Ксилоза

Кофеин
Келлин
Кумарин

Лактоза
Лимонная кислота

Мальтоза
Манноза

Ментол

Мочевая кислота

Муравьиная и Уксусная кислоты
Никотин

Олиторизид
Пектин
Пинен

Рутин и Кверцетин
Сантонин
Склареол
Слизевая кислота
Соласодин
Сорбит
Сахароза
Танин

Теобромин
Тирозин
Триоксиглутаровая кислота

Усниновая кислота

Урсоловая кислота

Фруктоза и Инулин
Фурфурол

Хамазулен
Хинин
Хитин
Холевая кислота

Хлорогеновая кислота
Хлорофилл

Цистеин
Цитизин
Цитраль

Щавелевая кислота

Эргостерин
Эруковая и Брассидиновая кислоты



 
Предыдущая Следующая

Вязкость палеозойской нефти очень высокая, а при +12 - +18оС свойство текучести утрачивается полностью из-за образования структуры парафиновых ассоциатов. Как перекачивать такую нефть? Выход был найден в смешении палеозойской и юрской нефтей с соотношении 1:9, т.е. изменили соотношение структурирующихся и неструктурирующихся компонентов. Вязкость системы составила 1,885 м2/с. Но при температуре ниже 20оС неньютоновские свойства остаются.

Подпись:  Между дисперсностью и макроскопическими свойствами нефтяной дисперсной системы существует связь, выражаемая полиэкстремальными зависимостями (рис. 3.2). Такие зависимости позволяют подбирать оптимальные сочетания внешних воздействий для целенаправленного изменения коллоидно-химических и реологических свойств нефтей.

 

Рис. 3.2. Зависимость кинематической вязкости (а) и температуры застывания (б) смеси песцовой и западно-сибирской нефти от содержания песцовой нефти в смеси

 

Оптимизация процессов транспорта нефтяных систем связана с проблемой уменьшения гидравлического сопротивления. Принципиально новые решения возможны путем целенаправленного воздействия на нефтяные системы перед и в процессе транспорта.

На рис. 3.2 представлена полиэкстремальная зависимость вязкости и температуры застывания нефтяной смеси от соотношения исходных нефтей. При транспорте в условиях переменных термобарических параметров нефть претерпевает многократные изменения структуры, результатом является изменение степени дисперсности и свойств поверхностных слоев, разделяющих объемную фазу и поверхность трубопроводов.

Известно, что при переходе к развитому турбулентному течению происходит резкое изменение скорости потока при переходе от пристеночной области к объемной. Физико-химический механизм действия добавок связан ламинаризацией турбулентного потока, изменением его структуры, уменьшением интенсивности поперечных турбулентных пульсаций и поперечного переноса импульса при одновременном увеличении толщины пристенного слоя.

Более "массивные" дисперсные частицы отстают от потока, мигрируют в поперечном направлении и скапливаются вблизи поверхности раздела. В нефтяной системе такими "массивными" частицами являются высокомолекулярные смолисто-асфальтеновые соединения. Этот эффект ведет к концентрационному перераспределению компонентов по радиусу трубы и, соответственно, к дополнительному уменьшению устойчивости системы.


Предыдущая Следующая