Главная

Химические источники тока
Практическая химия
Справочные материалы
Журнальные заметки

Именные химические приборы

Химические элементы

Химический клипарт

Библиотека химии углеводов

Метеорология

Минералогия


Абиетиновая кислота
Амигдалин
Анабазин и Лупинин
Ангеликалактон
Арабиноза
Арахидоновая кислота

Арбутин
1,8-диокси-2-ацетилнафталин

Белки из гороха
Бетаин из патоки
Бетулин и Суберин
Бетулиновая кислота

Борнеол

Ванилин

Винная ксилота

Галактоза
Глициризиновая кислота
Глюкоза
Глютаминовая кислота
Госсипол

Дигитонин

Жирные кислоты

Казеин и Тирозин

Камфора из пинена

Каротин

Катехины

Ксилоза

Кофеин
Келлин
Кумарин

Лактоза
Лимонная кислота

Мальтоза
Манноза

Ментол

Мочевая кислота

Муравьиная и Уксусная кислоты
Никотин

Олиторизид
Пектин
Пинен

Рутин и Кверцетин
Сантонин
Склареол
Слизевая кислота
Соласодин
Сорбит
Сахароза
Танин

Теобромин
Тирозин
Триоксиглутаровая кислота

Усниновая кислота

Урсоловая кислота

Фруктоза и Инулин
Фурфурол

Хамазулен
Хинин
Хитин
Холевая кислота

Хлорогеновая кислота
Хлорофилл

Цистеин
Цитизин
Цитраль

Щавелевая кислота

Эргостерин
Эруковая и Брассидиновая кислоты



 
Предыдущая Следующая

NH3 + BF3 = NH3BF3

У атома азота в молекуле аммиака имеется неподеленная пара электронов, а у атома бора в молекуле трифторида бора - вакантная орбиталь.

При взаимодействии по донорно-акцепторному механизму атом азота отдает на связь пару электронов, а атом бора - вакантную орби­таль, в результате чего возникает ковалентная связь

                                           H        F                    H           F

                                            |          |                      |            |  

                                    H – N  +ڤ B – F  → H – N – B – F

                                            |          |                      |            | 

                                           H        F                    H           F

  В полученном соединении суммарные валентности бора и азота равны четырем.

  Комплексы. Аналогичным образом образуется соединение КРF6 при взаимодействии KF и PF5, которое можно записать в виде К[РF6].

  При взаимодействии сульфата меди и аммиака образуется сложное соединение

CuSO4+4NH3=CuSO4 • 4NН3

которое выражается формулой [Сu(NН3)4]SO4. Сложные соединения, у которых имеются ковалентные связи, образованные по донорно-акцепторному механизму, получили название комплексных или коор­динационных соединений. (см. главу 9).

 

Глава 5 . Энергетика химических процессов

 

Науку о взаимных превращениях различных видов энергии называют термодинамикой. Термодинамика устанавливает законы этих превращений, а также направление самопроизвольного тече­ния различных процессов в данных условиях.

           5.1. Общие понятия. При протекании химических реакций изменяет­ся энергетическое состояние системы, в которой идет эта реакция. Состояние системы характеризуется термодинамическими парамет­рами (р, Т, с и др.). При изменении параметров меняется и состояние системы. В термодинамике свойст­ва системы рассматриваются при ее равновесном состоянии. Термодинамическое состояние системы называют равновесным   в том случае, когда его термодинамические параметры одинаковы во всех точках системы и не изменяются самопроизвольно (без затраты работы) во времени. Термодинамика изучает переходы системы из одного состояния в другое. Но переходы должны осуществляться при термодинамическом равновесии с окружающей средой, т.е. очень медленно, а в идеале — бесконечно медленно. При этом могут изменяться все параметры состояния системы, либо некоторые параметры остаются без изменения. Если процессы перехода системы происходят при постоянстве каких-то параметров системы, то они называются:


Предыдущая Следующая