Главная

Химические источники тока
Практическая химия
Справочные материалы
Журнальные заметки

Именные химические приборы

Химические элементы

Химический клипарт

Библиотека химии углеводов

Метеорология

Минералогия


Абиетиновая кислота
Амигдалин
Анабазин и Лупинин
Ангеликалактон
Арабиноза
Арахидоновая кислота

Арбутин
1,8-диокси-2-ацетилнафталин

Белки из гороха
Бетаин из патоки
Бетулин и Суберин
Бетулиновая кислота

Борнеол

Ванилин

Винная ксилота

Галактоза
Глициризиновая кислота
Глюкоза
Глютаминовая кислота
Госсипол

Дигитонин

Жирные кислоты

Казеин и Тирозин

Камфора из пинена

Каротин

Катехины

Ксилоза

Кофеин
Келлин
Кумарин

Лактоза
Лимонная кислота

Мальтоза
Манноза

Ментол

Мочевая кислота

Муравьиная и Уксусная кислоты
Никотин

Олиторизид
Пектин
Пинен

Рутин и Кверцетин
Сантонин
Склареол
Слизевая кислота
Соласодин
Сорбит
Сахароза
Танин

Теобромин
Тирозин
Триоксиглутаровая кислота

Усниновая кислота

Урсоловая кислота

Фруктоза и Инулин
Фурфурол

Хамазулен
Хинин
Хитин
Холевая кислота

Хлорогеновая кислота
Хлорофилл

Цистеин
Цитизин
Цитраль

Щавелевая кислота

Эргостерин
Эруковая и Брассидиновая кислоты



 
Предыдущая Следующая

                                   К+          I                         I

                                                               Hg2+

                                   К+          I                          I

       В настоящее время главную валентность надо объяснить ионной или ковалентной связью, а побочную – ковалентной связью, возникшей по донорно-акцепторному механизму (см. раздел 4.8.2.).  Исходя из механизма образования комплексных соединений, им  можно дать более точное, не имеющее исключений определение: комплексные соединения – это соединения, характеризующиеся наличием хотя бы одной ковалентной связи, возникшей по донорно-акцепторному механизму.

       Комплексообразование происходит во всех случаях, когда из менее сложных систем образуются системы более сложные. Согласно координационной теории А. Вернера в структуре комплексного соединения различают коорди­национную (внутреннюю) сферу, состоящую из центральной частицы – комплексообразователя (ион или атом) – и окру­жающих ее лигандов (ионы противоположного знака или моле­кулы). Ионы, находящиеся за пределами координационной сферы, образуют внешнюю сферу комплексного соединения. Число лигандов вокруг комплексообразователя называется его коорди­национным числом. Внутренняя сфера (комплекс) может быть анионом, катионом и не иметь заряда. Например, в комплексном соединении K3[Fe(CN)6] внешняя сфера – 3К+, внутренняя сфера [Fe(CN)6]3-, где Fe3+комплексообразователь, a 6CN-лиганды, причем, 6 – координационное число. Таким образом, комплексное соединение (как правило) в узлах кристаллической решетки содержит комплекс, способный к самостоятельному существованию и в растворе.

   9.2. Комплексообразователи. Комплексообразователями  служат атомы или ионы, имеющие вакантные орбитали. Способность к комплексообразованию возрастает с увеличением заряда иона и умень­шением его размера. К наиболее распространенным комплексообразователям относятся ионы d-элементов VII, VIII, I и II групп периоди­ческой таблицы элементов.

   9.3.Лиганды. К числу лигандов относятся простые анионы, та­кие как F- , СI-, Вr-, I-, S2-, сложные анионы, например CN, NCS, NO2-) , молекулы, например Н2О, NH3, C. Ионы или отдельные атомы ионов и молекул лигандов имеют неподелен­ные пары электронов. В зависимости от того, какое число вакантных орбиталей у комплексообразователя занимают лиганды, они подраз­деляются на монодентантные (одна орбиталь), например3, СI-, бидентантные, например N2H4или En, полидентантные, например этилендиаминтетрауксусная кислота (ЕДТА), являющаяся шестидентантным лигандом


Предыдущая Следующая